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Abstract—We compared the practice of grouping users based
on roles to define normal network behaviors with grouping users
based on behavioral similarities. For this comparison we utilized
Netflow-derived features to characterize the network traffic of
users on a small campus, and labeled the feature vectors based
on user roles. Using the same flow-feature sets we also grouped
users based on shared network behaviors, using K-means++ to
cluster user data sets. Intra-group similarities under the grouping
strategies were tested in two ways. First, by using a linear
(Nearest Centroid) classifier to measure how separable group
data sets were. Second, by averaging each user’s feature vector
values by week of activity, and measuring pairwise distances
between the centroid vectors to determine intra-group and inter-
group distance distributions. Our tests showed that creating user
groups via clustering user data sets created tighter ranges of user
behavior as compared to grouping based on user roles.

Index Terms—Netflow, machine-learning, behavior

I. INTRODUCTION

Network administrators face a lot of challenges, but per-
haps the most potentially damaging and difficult to detect
challenge is the malicious insider. To detect network users
behaving badly, a number of tools have been developed to
identify anomalous user behaviors. In many cases detection
is performed by comparing user profiles, either by change
detection (comparing a user’s current and past profiles) or
deviation detection (comparing a user’s profile against those
of a group) [6]. Measured changes or deviations beyond some
set threshold can be flagged, spurring further investigation.

While anomaly detection could be addressed by comparing
past and present user profiles, such an approach has lim-
itations. User behaviors could be anomalous during profile
creation. Classifiers trained on individual profiles could over-
fit the data, resulting in false positives when user taskings
change [11]. Defining normality based on aggregate activities
of groups provides broader ranges of behaviors, reducing false
positives. Ideally users within a group would behave similarly;
grouping users that behave dissimilarly could result in broader
thresholds leading to high false-negative rates. Identifying an
approach to group users with similar behaviors would therefore
be useful in creating meaningful detection thresholds.

One approach to creating groups of similar users is to
do so based on organizational roles. Some network behavior
analysis tools such as IBM’s Identity Risk and Investigation
Solution (IRIS) [1] enable grouping peers as a means of
defining normal network behaviors. The assumption is that,

for example, an engineer could be expected to behave more
like other engineers than administrators on the network.

Another approach to grouping similar users is to employ
observed behavioral similarities. This approach is used by
banks to detect financial fraud [7]. Based on selected measures
of activity, user-data sets can be clustered. Using this strat-
egy should result in detection thresholds broader than those
obtained with single user profiles, yet tighter than bounds
obtained through role-based grouping.

We examined the utility of using organizational roles in
defining the bounds of normal network traffic, as measured
using Netflow. This was performed by collecting five weeks
of Netflow records from a /21 subnet on a small campus,
associating flow records with the roles of users on systems
generating the traffic, and generating vectors of Netflow-
derived features representing user activities over set periods.
The role-labeled feature vectors were used to train a linear
(Nearest Centroid) classifier. Data sets were then re-labeled,
using K-means++ to cluster users based on centroid vectors
(vectors of mean-feature values). The classifier was then
trained to differentiate data sets labeled by cluster number.
For each strategy (role-based or clustering) used to group user
data sets an additional user group was created by drawing user
data sets proportionally from each user group. This pseudo-
user group provided a contrast in classification performance
as compared to role or cluster-defined groups.

We also computed pairwise distances between user centroid
vectors. For each user grouping strategy we plotted intra-group
and inter-group distance distributions, as well as distance
distributions comparing user activities over time. Through
these experiments we determined that user roles were not
closely coupled with user network behaviors, and grouping
users based on behavioral similarities produces tighter ranges
of measured behaviors as compared to role-based grouping.

II. RELATED WORK

Improving behavioral anomaly detection through role-based
grouping of user profiles has been widely examined and
implemented. Legg et al. [9] extracted features from log
data, creating user profiles that were compared to role-based
groups. Feature sets were normalized and projected into a two-
dimensional space using PCA decomposition. Point distances
from the space origin defined an anomaly score, with high
values flagged.



The Identity Risk and Investigation Solution (IRIS) created
by IBM defined normal activities based on peer behaviors
[1]. Features used for detection include access frequencies for
applications, access intervals, and login times, among others.
Feature values for each user were compared against peer group
value distributions to determine if the values were anomalous.

Mathew et al. [10] tested different classifiers (Support
Vector Machines, Naive Bayes, K-means clustering, Decision
Trees) on statistical summaries of SQL query results. Results
were labeled by the role (Faculty, Staff, Framework, Chair) of
the user that made the query. Classifiers were trained one-on-
one (Chair vs. Faculty, etc.). They found the best performance
(91% - 100% detection) using the K-means classifier.

Users can also be grouped based on observed behavioral
similarities. Frias-Martinez [4]–[6] defined a network access-
control system in which user groups were defined by clustering
(via K-means++) flow-based feature vectors, to identify similar
behaviors. To detect anomalies, new feature vectors were
compared against previously defined clusters. If too dissimilar,
the new vector is declared anomalous. Feature vectors were
based on port usage, including values such as total flows,
average bytes per flow, average milliseconds per flow, total
packets, average packets per flow, among others.

Dean [3] extensively compared role-based versus behavior-
based approaches to grouping user data sets. This paper
presents a subset of the analyses performed in [3].

III. DATA SETS

To generate our Netflow data set, we collected five weeks
of network traffic from an IPv4 /21 subnet at the Naval
Postgraduate School (NPS). Large components of the collected
flow records had to be removed, based on their lack of utility
in assessing user behavior patterns. During two days of the
collection period, network managers performed a port scan
across all systems on the network, greatly increasing the
flow counts recorded. In addition, over a three week period
a significant fraction of the observed traffic was generated
by a number of computers making frequent but unsuccessful
attempts to connect over port 5223 (Apple Push Notification)
to Apple servers. We also removed any traffic transiting the
router without an endpoint on the /21 network. Finally, we
dropped all DHCP and NTP flows, due to lower relevance to
user network activities. The captured data was converted into
Netflow v5 records using the SiLK [2] tool suite.

A. User Role Assignment

With the SafeConnect [8] network access database in use at
NPS, we were able to associate much of the collected flow data
with individual user names. User names were then correlated
with each user’s respective role and department, by match-
ing them with data extracted from the campus Lightweight
Directory Access Protocol (LDAP) server. After user roles
were determined, numbers were used to represent user names
in order to anonymize the data. Users were grouped into
three categories (Faculty, Staff. Student), with each category
composed of subgroups (see Table I). The number of users

Table I
COUNTS OF THE ROLE GROUPS IN DATA SET

Categories Role Groups Count

Staff

Administration 29
Admin 30

Class management 8
Funding/acquisition 12

IT support 35

Faculty
Lecturer 42

Research Assistant 84
Tenure 151

Student
Distance Learning Student 16

Masters 954
PhD Student 12

per role group varied widely, leading to the generation of
unbalanced data classes.

While the roles of individuals were straightforward to
identify, there was a great deal of overlap between the dif-
ferent role group categories. Tenured faculty members often
performed research and lectured. PhD and Masters students
often shared the same classes. The same problem exists in
many organizations. Engineers may perform management-
like duties for contracted technical personnel, including the
tracking and reporting of project status. Although some roles
may be distinctive based on access requirements to resources
(e.g. SSH connections to key servers), most roles we observed
showed tremendous overlap in terms of tasks shared.

B. Group Refactoring

Because data set sizes for the role-based groups were highly
unbalanced, the feature vectors for the two largest classes
(Masters Student and Tenured Faculty) were downsized (85%
and 50 % respectively) through random selection and removal.

IV. FEATURE VECTOR DEVELOPMENT

To determine what port-activity features to derive from the
Netflow data for our analysis, we evaluated port usage for each
selected role group. As we wanted to focus on flows generated
by user activities, we tried to remove flow records resulting
from automated (non-user initiated) processes.

A. Automatic Flows Detection

Our process for identifying automated flows was based
on patterns we found to be closely associated with non-user
generated traffic. These patterns were:
• Repeated bi-directional flows (shared server port, proto-

col, outgoing bytes, packets, flags and incoming bytes,
packets, flags) between two systems

• Repeated intervals between flow start times (nearest sec-
ond, for intervals > 2 seconds), for flows between two
systems over same server port and protocol

• Repeated web page loads, with approximately the same
interval between page load start times.

Repeated bi-directional flows, intervals between flow starts
and web-page reloads were identified based on the instances
exhibiting outlier counts. We defined outlier counts in the same



way outliers are defined for Tukey [12] boxplots, where the
inter-quartile range in a set of count values (C) is IQR =
3rd quartile value − 1st quartile value. The outlier counts
we identified were on the high end of the count range, i.e.
Co = {cj ≥ 3rd quartile value+ 1.5 ∗ IQR | cj∈C}.

For the first two patterns, flow sets between two systems
(e.g. a user client and distant server) sharing a common server
port and protocol were tested. Flow records were deemed
automatic if counts of bidirectional flows (or flow intervals)
were outliers compared to other flow pairs/intervals observed
in the flow data set. For flows tagged as automatic due to
outlier interval values, flows equally spaced in time were
flagged except for the initial flow, based on the assumption
that a user action initiated the first flow of the series.

Identifying repeated web page loads as automatic activity
was a decision we made due to the large number of flows
spawned in loading many web pages. A web browser left
open on a site that automatically refreshes content can add
a significant number of flow records to a user’s profile. Con-
versely, users leaving browsers open might be a behavior an
organization may wish to include in comparing user behaviors.

Web page loads were identified as flow sets where:
• Intervals between flow starts are < 4 seconds (flow burst)
• More than 90% of bytes transferred in the set were via

ports 80 or 443 (HTTP or HTTPS)
• Total flow count in a set, excluding DNS and no-payload

TCP packets, was > 20
Interval values (I) between page-load start times were rounded
off, as reloads did not recur with second-level precision.
Longer intervals were rounded using a factor d = 10 ∗
b(Itdelta + 5)/10c, itself rounded to the nearest 10 seconds.
Intervals were rounded to the nearest multiple of d, i.e. the
intervals counted were I ′ = d ∗ b(I + 0.5d)/dc. For our
analyses, we used a tdelta = 0.08. For each user system
the rounded intervals between similar web page loads were
counted, and if the count for one interval value was an
outlier compared to other intervals, repeated web page loads
in sequences of three or more were flagged.

Because web pages like CNN and Fox News performed
automatic reloads when part of the content (stories, advertisers,
graphics) changed, identifying repeated loads from the same
web site required some measurement of similarity. Similarity
of web-page loads was determined by comparing:
• Total flows (less than 25% difference in flow counts)
• The distributions of byte transfers associated with server

ports and with server IP addresses in the two data sets
If two page loads were approximately the same size in flow
counts, similarity between two page-load flow sets (F1, F2)
was measured based on bytes passed per IP address connected
to and bytes passed per server port used. For a distant IP
address ai in flow set Fx,we define bytes passed to/from
ai as b(Fx[ai]). We define a distance measure between F1

and F2 in terms of bytes passed per distant IP address
to be dip = ((

∑m
i=1(

b(F1[ai])
mip

− b(F2[ai])
mip

)2)1/2)/m, where
mip = max(b(F1[ai]), b(F2[ai])). We also define the bytes

Figure 1. Web Page Reload Identification

passed to/from distant servers over port pj as b(Fx[pj ]), and a
corresponding Euclidean distance as dp = ((

∑n
j=1(

b(F1[pj ])
mp

−
b(F2[pj ])

mp
)2)1/2)/n. Using both measures, we define a total

distance between the two flow sets as d = (dip+ dp)/2. Flow
sets were deemed similar if d fell below a threshold, or d < θd.
We used a θd =0.9 for our analysis.

Figure 1 depicts the process of identifying repeating web
page loads. Repeating sets of page-load flows are labeled
with “r” in Figure 1 . The intervals between web page loads
are captured, with one interval value (ik) occurring most
frequently. The web page loads with start times separated by
the identified interval are selected, tested for similarity, and
repeated sequences (three or more) of similar web-page loads
were annotated as automatic after the first load.

B. Feature Definitions

Based on these algorithms, flows within user data sets were
evaluated and automated flows flagged. Flow sets minus the
flagged records were designated as “cleaned”, both cleaned
and non-cleaned data sets were tested to determine if cleaning
enhanced classifier performance. The ports used for each user
group were ranked by total flow counts, based on the cleaned
flow records generated. Table II shows the ports we selected
as potentially useful in characterizing user network activities.

Port Protocol Often used for:
22 TCP Secure shell
80 TCP HTTP
88 TCP Kerberos
137 UDP NETBIOS Name Service
138 UDP NETBIOS Datagram Service
389 UDP LDAP
443 TCP HTTPS
445 TCP Microsoft Directory Services (SMB)
5222 TCP Jabber/GoogleTalk Client Connection
5353 UDP Multicast DNS
8080 TCP HTTP-alt
8055 TCP Senomix Timesheets Server
9443 TCP VMware HTTPS, SSL
60000 TCP MS Exchange RPC Client Access Service
60001 TCP MS Exchange Address Book

Table II
SELECTED PORTS AND PROTOCOLS FOR FEATURES

For each port X listed in Table II, we defined the following
features:

• Total inbound bytes for a user system over port X, divided
by total bytes passed during a sampling interval



Feature Name Type Description

port X in
Port
Behavior

Total port X bytes
inbound/total bytes all ports

port X out Total port X bytes
outbound/total bytes all ports

port X std Port X standard deviation/
mean of byte values

port entropy entropy of distant ports

bytes out Volume &
Flow
Density

Total bytes outbound/total
bytes passed

packets out Total packets outbound/total
packets passed

bpp Average bytes per packet
tcp frac

Protocol

TCP fraction of total flows
udp frac UDP fraction of total flows
igmp frac IGMP fraction of total flows

multicast Fraction of multicast IP
address flows (224.0.0.0/4)

flag entropy Handshaking Entropy of TCP flag counts

duration std Temporal
Behavior

Standard deviation of flow
duration values

interval mean Average interval between
flow start times

interval std Standard deviation of flow
start time intervals

ip distance std Address
Related
Features

Standard deviation of src/dst
IP address distance/232

ip distance mean Mean of src/dst IP address
distance/232

addr entropy Entropy of the IP addresses
connected to

direction Fraction of flows outgoing
Table III

STATISTICAL AND INFORMATION-THEORY-DERIVED FEATURES

• Total outbound bytes for a user system over port X,
divided by total bytes passed during a sampling interval

• The coefficient of variation (mean/standard deviation, or
µ/σ) for the byte values observed passed over port X
(inbound and outbound), during a set sampling period

The entropy of server port-protocol flow counts observed
during a set sampling period was also determined and added
as a behavioral feature. Given the flow counts of n server port,
protocol combinations observed in a data set C, the normalized
entropy of the port-protocol combinations can be computed as
H(X) = −

∑
ci∈C

p(ci)log(p(ci))/log(n).

Besides the port behavior features, we identified features
relating to flow volume and density, protocols, TCP handshak-
ing, temporal behaviors and IP address metrics (Table III).

The flow volume and density features were selected to
characterize traffic flows relative to direction (fraction of
bytes outbound, fraction of packets outbound) and packet
sizes (bytes per packet). The protocol features reflect protocol
usage (fraction of TCP/UDP/IGMP/multicast flows), while
the entropy of TCP flag occurrences is a TCP handshaking
feature. Temporal behaviors refer to measurements of flow
durations (standard deviation) and intervals between flow starts
(mean and standard deviation). The address related features
relate to distances between source and destination IP addresses
(expressed as 32 bit numbers), normalized entropy of IP
addresses in the data set, and the fraction of flows outbound.
Combined, the different feature groups add up to 61 features.

For our experiments, we applied PCA to reduce the number
of dimensions to 31 (retaining 95% of data-set variance).

C. Data Slicing Intervals

One factor that can affect the analysis of network behaviors
is the decision criteria for sampling network-flow data. Longer
sampling intervals (e.g. one day) provide gross measurements
of overall activities, where measurements on activities of
potential interest can be averaged out and lost. Short-duration
sampling intervals (e.g. 15 minutes) can be used to character-
ize activities at the task level, but flow bursts associated with
specific tasks are more likely to be split between different
sampling periods and feature measures will show greater
variability (i.e. appear noisy) as users switch between tasks.

To observe the effects of different data sampling intervals
on the classifier’s ability to differentiate user-group data sets,
we sampled each user’s Netflow records using four intervals.
Expressed in minutes, the intervals chosen were 15, 30, 60 and
1440 (one day). For each user IP address and interval, records
of flows to and from the system were aggregated. Features of
flows (bytes, packets, duration) extending across intervals were
segmented proportionally, based on the fraction of the flows
within each inclusive interval. After flow set segmentation
based on the interval used value vectors of the chosen features
were created, each labeled with the user ID number and role
subgroup associated with the flow data.

V. USER GROUPING

In addition to grouping user-data sets based on roles, we
also grouped users by clustering data sets. For each set of
user feature vectors (cleaned/not cleaned, 15, 30, 60, and 1440
minute intervals), the vectors were aggregated by the week the
traffic occurred. For each week, centroid vectors (vectors of
mean values for each feature) were created and clustered using
K-means++. For our experiments we set k = 11, to create the
same number of groups as those created based on user roles.
Feature-vector data sets were labeled based on the cluster ID
number of their respective users.

A. Group-Neutral Test Sets

One approach to measure the strength of a data-class
definition strategy is to create a hybrid class, composed of data
drawn proportionally from the other classes. If the original
classes contained data elements enabling differentiation be-
tween classes, a multi-class classifier should perform poorly on
the hybrid class relative to the others. This provides a reference
point, demonstrating the effectiveness of a class definition
strategy in grouping similar things together.

For each grouping strategy evaluated (role-based, user-
clustering) and feature-vector data set, we created a hybrid
class by extracting user-data sets proportionally from the
defined groups. From each defined group user-data sets were
randomly selected, such that between 13 and 17 percent of
the total vectors for that group were identified. These vectors
were extracted and incorporated into a hybrid class.



VI. EXPERIMENTS

Two different methodologies were tested to capture the
differences between the user grouping strategies, in terms of
supporting the bounding of behaviors for anomaly detection.
In the first approach, a Nearest Centroid classifier was used
to differentiate between the role-based and hybrid-class data
sets, for each combination of flow-data cleaning (clean vs. not
cleaned) and sampling interval. The experiment was repeated
after clustering user centroid vectors for each week of data,
and using cluster numbers as user group labels.

In the second approach we determined pairwise Euclidean
distances between centroid vectors, each representing a week
of network traffic for one user. For each user in group G,
pairwise distance distributions were computed for individual
users (comparing across weeks of activity), between users
within group G (intra-group distances), and between users in
group G and the other user groups (inter-group distances).
For clustering-based user groups the inter- and intra-group
distances were determined for each week.

For each experiment the number of clusters (k) was set to
the number of user roles, to enable more direct comparisons
with the role-group results; the value of k can be varied to
tune group sizes and minimize point-to-point distances within
clusters.

A. Classifier Testing

For each combination of sampling interval and flow filtering
(clean/unclean) status, the feature-vector data sets for each user
were used to train and test a Nearest Centroid classifier. To
perform multi-class classification, the classifier was trained
using a “one versus the rest” approach. The training/testing
data split used was 70:30 for each experiment.

Training and testing was performed twice; once for feature
vectors labeled based on user roles and again using feature
vectors labeled based on the clustering-defined user groups.

B. Self-Similarity Analysis

To determine whether clustering-defined user groups exhibit
greater self-similarity in measured network behaviors relative
to role-based groups, we performed pairwise distance measure-
ments between user centroid-vector data sets for each grouping
strategy. Individual variations in behavior (self-similarity) were
measured by determining pairwise distances between user
centroid vectors for each week of observed activity. Intra-
group behavioral differences were measured per week, by de-
termining the pairwise distances between each user’s centroid
vector and the centroid vectors of other users within the group.

VII. RESULTS

Figure 2 shows the precision and recall scores achieved by
the Nearest Centroid classifier on the role-based labeled data
sets. Role groups on the X axis are listed in order of decreasing
data-set sizes. Because of the proportional data extraction used
to create the pseudo group, its size was between that of the
Research Assistant and Tenured Faculty role groups.

Figure 2. Classifier Precision and Recall on Role-Based User Groups

As can be seen, the precision scores follow an almost
linear pattern in relation to the decreasing data set sizes, and
the pseudo-role group did not score significantly worse than
comparably sized role groups. This pattern was evident across
all feature vector variants tested. These results indicate a weak
relationship between the roles used to group user data sets and
the feature-vector data sets associated with each role.

Figure 3 shows precision and recall scores achieved for data
sets labeled via user data-set clustering. Only the results relat-
ing to feature vectors derived from the non-filtered (unclean)
flow records are shown to enhance readability. Each feature-
vector variant clustered differently, resulting in no consistency
in precision and recall scores across the cluster labels. Two
patterns are notable; the feature vectors derived from one-day
sampling intervals showed more consistent precision and recall
scores across the cluster labels, and the pseudo-group precision
and recall scores were in most cases substantially lower than
what was observed for the cluster-defined user groups.

Figure 3. Classifier Precision and Recall on Clustered User Groups



Based on these observations we can infer that the cluster-
defined user groups exhibited more self-similarity than found
in the role-based user groups.

The intra- and inter-group distance comparisons were also
noticeably different for the role-based vs. cluster-based data
sets (Figures 4 and 5). While the intra-group distance distri-
butions for role-based groups were generally on a par with the
inter-group distributions, intra-group distances for the cluster-
based user groups were generally either visibly lower than the
intra-group ranges or about the same as the lowest inter-group
range. The figures show the ranges obtained by comparing
centroid vectors derived from the one-day sampling interval
data sets. Similar results were obtained with the other sampling
intervals and data cleaning state.

Figure 4. Pairwise Distances for Role-Based User Groups

Based on these experiments we conclude that clustering
user-data sets is a better strategy for creating groups of
users with similar behaviors than using role-based labels.
By minimizing intra-group distances between feature vectors,
tighter bounds on user behaviors can be set. With cluster-size
tuning through varying k, it should also be possible to optimize
anomaly detection thresholds.
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